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Near infrared hyperspectral images (HSI) were recorded for whole yellow maize kernels

(commercial hybrids) defined as either hard, intermediate, or soft by experienced maize breeders.

The images were acquired with a linescan (pushbroom) instrument using a HgCdTe detector. The

final image size was 570 � 219 pixels in 239 wavelength bands from 1000 to 2498 nm in steps of

approximately 6.5 nm. Multivariate image cleaning was used to remove background and optical

errors, in which about two-thirds of all pixels were removed. The cleaned image was used to

calculate a principal component analysis (PCA) model after multiplicative scatter correction (MSC)

and mean-centering were applied. It was possible to find clusters representing vitreous and floury

endosperm (different types of endosperm present in varying ratios in hard and soft kernels) as well

as a third type of endosperm by interactively delineating polygon based clusters in the score plot of

the second and fourth principal components and projecting the results on the image space.

Chemical interpretation of the loading line plots shows the effect of starch density and the protein

matrix. The vitreous and floury endosperm clusters were used to make a partial least-squares

discriminant analysis (PLS-DA) model, using four components, with a coefficient of determination

(R2) for the y data (kernel hardness category) for the training set of over 85%. This PLS-DA model

could be used for prediction in a test set. We show how the prediction images can be interpreted,

thus confirming the validity of the PCA classification. The technique presented here is very powerful

for laboratory studies of small cereal samples in order to produce localized information.
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INTRODUCTION

Maize (Zea mays L.) kernel hardness is principally a genetic
expression, but environment and postharvest handling also have
an influence on hardness properties (1). Maize is different from
wheat in that both glassy (hard) and floury (soft) endosperm are
found within a single kernel in a particular ratio (1). It is this ratio
that determines whether the kernel is hard, soft, or intermediate
(1, 2). Hard kernels have predominantly vitreous (glassy) endo-
sperm; soft kernels consist principally of floury endosperm, while
intermediate kernels are expected to possess approximately equal
quantities of both. The floury endosperm is usually localized
toward the center of the kernel and close to the hull, whereas the
vitreous endosperm is situated toward the sides of the kernel. The
vitreous endosperm is tightly compacted with few or no air spaces.
The starch granules are held together by a protein matrix, and
protein bodies (zein) are found on the starch granules (2, 3). The
floury endosperm, however, comprises spherical starch granules

that are covered with a protein matrix without zein bodies. Maize
hardness is important to producers and processors in the grain
trade (1, 4, 5) since it greatly influences end-use processing per-
formance and processing of maize grits into certain foods.

Maize hardness has been assessed to date using kernel den-
sity (4, 5); particle size index (PSI) (4); the Stenvert hardness
tester (7); the tangential abrasive dehulling device (TADD) (6,8);
and the rapid visco analyzer (RVA) (6). Most of these methods
require the destruction of the sample.

Using some of the aforementioned techniques together with
bulk near-infrared (NIR) spectroscopy and multivariate data
analysis, predictions of maize hardness (4, 5, 9), dry-milling
quality (8), and wet-milling starch yield were possible (10).

The problem of selecting the most appropriate method to
determine maize hardness nondestructively either as a reference
method for NIR calibration development or as a standalone
method remains unresolved. The selected method should satisfy
both maize breeders and industry.

A likely method to be employed could be NIR hyperspectral
imaging that produces both localization information and a
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complete spectrum in each pixel in the NIR wavelength region. It
combines the strengths of imaging with those of bulk NIR
spectroscopy. A hyperspectral image can be regarded as a stack
of gray level images taken at different wavelengths or as an image
where each pixel is aNIR spectrum (11-13). The objective of this
study was thus to evaluate the potential of NIR hyperspectral
imaging to distinguish between maize kernels (commercial hy-
brids) of different kernel hardness categories, i.e., hard, inter-
mediate, or soft. Advantages of using this system successfully
would be that, depending on the system being used, images of
whole kernels can be acquired nondestructively in as little as 8 s,
and although images of multiple kernels are collected, the results
of single kernels can be obtained.

Hyperspectral images (HSI) are large in size and provide an
excellent means of applying chemometrics techniques. A single
hyperspectral image can consist of close to 100 000 spectra, and
the only way of dealing with such large data sets is by applying
multivariate data analysis (chemometrics) techniques. Data re-
duction is a goodmeans of controlling the large amounts of data.
In many cases, a principal component (PCA) model can reduce a
hyperpectral image with >100 wavelength bands to less than
10 principal component (PC) score images. The importance of
localmodels is evident from the fact thatHSI have approximately
105 pixels. This means that even a subset of less than 1% of the
images can become a data set with over 1000 spectra. A compar-
ison between NIR hyperspectral imaging and bulk NIR spectro-
scopy is given in Table 1.

A number of reviews exist for the application of NIR hyper-
spectral imaging in the literature (14-16). The main applications
include fruits and vegetables, meats and fish, and cereals for the
region 400-1100 nm. In some cases, the InGaAs region from 900
to 1700 nm is used with a few applications using the mercury-
cadmium-telluride (HgCdTe) wavelength range (1000-2500 nm).
Linescan (pushbroom) is becoming the most important mode of
imaging because of its speed and versatility, especially if real-time
chemometrics algorithms are integrated in the solution.

HSI are three-way arrays with two pixel coordinate ways and
one wavelength way (11-13). It is customary to reorganize these
arrays into large matrices with pixels� wavelengths as the ways.
One such matrix may be called X. For the example in this
article, the three-way array is of the size 570�219�239 and is
reorganized into a 124 830 � 239 matrix. When background,
optical errors, and bad pixels are removed, the matrix becomes
smaller than 124 830� 239, but the principles of the analysis
shown below still remain valid. The same goes for the selection of
regions of interest (ROI) or classes (17).

The matrixX can be subjected to PCA for the purpose of data
reduction, usually after a spectral correction such as multiplica-
tive scatter correction (MSC) (18) or standard normal variate
(SNV) (19) and mean-centering. The equation for a PCA on a
data matrix is:

X ¼ TP0þE ð1Þ

where X=(IxK) the matrix X after spectral pretreatment and
mean-centering; T=(IxA) the score matrix with the score vectors
as columns; P= (KxA) the loading matrix with the loading
vectors as columns (P0 is the transpose of P); and E=(IxK) the
residual matrix. The score vectors in T can be reorganized into
images to form score images. They can also be shown as score
plots with density contours.

Regression on images uses a matrix Xtrain and a vector of
responses y for the training set. Usually, mean-centering of
Xtrain and y is used.

y ¼ Xtrainbþf ð2Þ
In eq 2, y=(Ix1) the vector of the response values, mean-centered;
Xtrain=(IxK) the matrix version of the training image or subset,
preprocessed and mean-centered; b=(Kx1) the vector of regres-
sion coefficients; and f=(Ix1) the vector of residuals.

The goal of any good regression model is to have a large
enough proportion of the sum of squares (SS) of y in the model
part Xb and a small part in the residual f. The coefficient of
determination (R2) for the training set is given as follows:

R2y ¼ SSðXbÞ=SSðyÞ ð3Þ
Once a satisfactory model is found, it can be tested on a test set
Xtest as follows:

yhat ¼ Xtestb ð4Þ
where yhat=predicted values for the test set, and Xtest=the test
set image or image subset reorganized into a matrix.

If the responses ytest for the test set are known, a residual can be
calculated as follows:

f t ¼ ytest -yhat ð5Þ
where ft=residual for the test set, and ytest=measured values for
the test set.

ft can be used to construct the root mean square error of
prediction (RMSEP) as follows:

RMSEP ¼ ½f t 0f t=J �
1
2 ð6Þ

where J is the number of test objects.

MATERIALS AND METHODS

Samples. Two sets of 18 whole yellow maize kernels, six each of three
different genotypes and hardness categories, were randomly selected from
three commercial hybrids, i.e., PHB 36K66 (soft); CRN 8010 (inter-
mediate); and PHB 30F40 (hard).

Instrumentation and Image Acquisition.A sisuChema SWIR (short
wave infrared) linescan imaging system, giving 231 pixels per line for
239 wavelength bands, was used (Specim, Spectral Imaging Ltd., Oulu,
Finland). The sisuChema is an imaging spectrograph coupled to a 2-D
array HgCdTe detector able to acquire a spectral range of 1000-2500 nm

Table 1. Comparison between NIR Hyperspectral Imaging and Bulk NIR Spectroscopy

instrument setup NIR hyperspectral imaging bulk NIR spectroscopy

sample preparation ideally none often grinding, homogenizing

sample holder flat surface with dark or reflecting background cup, petri dish, cuvette

illumination as homogeneous as possible may be heterogeneous

detector Si, InGaAs, HgCdTe, InSb Si, InGaAs, PbS

wavelength range VIS-1000 nm; 900-1700 nm; 1000-2500 nm VIS-2500 nm

depth of penetration 1-2 mm preferred 0.1 to tens of mm

scanning mode reflection; fluorescence; transmission reflection; transmission; transflection

measurement focal plane; line scan; point scan integrating; rotating cup; liquid cell

desired property irregularities in samples, i.e., local damages; local infections; concentration gradients concentration
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with ca. 6.5 nm spacing. The HgCdTe camera (f/2.0; focal length=31mm)
and electronics are fast, and data for a line can be collected in<10ms. The
stepper motor mechanism of the linescan is the limiting factor needing
about 15 ms per line. The number of lines is chosen before the scan and
differs for each sample.

The two sets of 18 maize kernels were positioned flat, embryo down on
silicon carbide sandpaper in a Latin Square (Sudoku) type design
(Figure 1) and imaged separately. This type of pattern avoids incorrect
classification because of uneven illumination. Eighteen was the maximum
number of maize kernels that could fit effectively into the field of view
(ca. 110�43 mm) of the sisuChema. However, due to the large number of
spectra associated with each HSI (ca. 100 000), six maize kernels of each
hardness type were adequate to allow the making of training and test sets.
There are two sampling aspects here: 18 kernels are not adequate to
technically describe the content of, e.g., a whole maize silo, truck load, or
even 100 kg bag, but 18 kernels are adequate for studying differences
between breeding lines on a laboratory scale.

Before each sample scan, black (with the camera shutter closed) and
white (using a Spectralon reference) reference images were acquired. The
images acquired with the sisuChema were converted to pseudoabsorbance
using the black (0%reflectance standard or background) andwhite (100%
reflectance standard) references, and a schematic illustration can be seen in
Figure 2. The original image cube was 618�231�239, but after cropping
to remove empty rows and columns, a 570�219�239 image was obtained.
The pixel size was approximately 0.2 mm� 0.2 mm giving an image area
of 114 mm�43.8 mm. An image of the second set of 18 maize kernels was
acquired in a manner similar to that used with the first one in order to test
repeatability of the analysis process. This image was 679�229�239 after
cropping.

Multivariate Image Analysis.Multivariate data analysis was carried
out in Evince 2.020 (UmBio AB, Umeå, Sweden). This included the

removal of dead pixels (elements of the detector array that give false or
inadequate responses), calculation of absorbances, image cleaning, and
removal of background in a PCA model (after mean-centering has been
applied), and visual interactive classification in a multivariate model. The
selection of pixels to be removed was made in the score plot. Since these
plots can be used interactively, the score image was thus used to confirm
that pixels from the maize kernels were not removed. After cleaning,MSC
(mean spectrumof image used as target spectrum) and SNV preprocessing
were applied to mean-centered data. Figure 3 illustrates how a sequence of
multivariate analysis operations combinedwith visual interactive selection
leads to the finally selected classes.Moredetails can be found inGeladi and
Grahn (20) andGrahnandGeladi (12). Some calculationswere carried out
in MATLAB, version 7.5 (The MathWorks, Natick, MA) and using the
PLS_Toolbox, version 5.0 (eigenvector Technologies, Wenatchee, WA).
Finally, a partial least-squares discriminant analysis (PLS-DA) model for
validation was built. Again, the analysis was performed after mean-
centering, and MSC was applied to the raw data.

RESULTS AND DISCUSSION

HSI are never error-free, and it was necessary to remove
background, shading and geometrical errors, bad pixels, and
specular reflection. The background and errors dominate in the
HSI and would use up extra components if an analysis by PCA
was attempted (21). Therefore, they had to be removed. Back-
ground removal was performed by making a three component
PCA model (eq 1) and interactively identifying background and
error components by going back and forth between score plot and
score image.About two-thirds of all pixelswere removed.Figure 4
shows the image of the first sample set at 1102 nm with back-
ground included and after background removal. Errors due to
shading, geometrical errors, bad pixels, and specular reflection
are often shown as outliers in the score plot. Using the interactive
nature between the score plot and score image, these outliers
could be identified, as, for example, shading in the score image,
and were removed.

The following nomenclature will be used when referring to
maize kernels of different hardness categories and the different
types of endosperm. Maize kernels of different hardness catego-
ries will be referred to as hard, intermediate, and soft, as labeled
by the maize breeders. The endosperm types will be referred
to as vitreous (glassy) and floury indicating hard and soft
endosperm, respectively. Theoretically, it is expected that hard
kernels would contain predominantly vitreous endosperm, soft

Figure 1. Digital image of maize kernels of different hardness (H = hard;
I = intermediate; S = soft) showing a typical Latin Square layout (2nd
sample set).

Figure 2. Schematic illustration of the conversion of reflection intensity to
pseudoabsorbance (0% background = black reference; 100% standard =
white reference).

Figure 3. Sequence of multivariate data analysis operations used during
the analysis of NIR hyperspectral image data of whole maize kernels
(HSA = hyperspectral array; preproc = preprocessing; PCA = principal
component analysis; clean = image cleaning; recalc = recalculate; class
image = classification image).
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kernels predominantly floury endosperm, and intermediate
kernels the two types of endosperm in approximately equal
amounts (1, 2).

Some preliminary results obtained in the present study, with-
out preprocessing of the spectra, were not optimal, and therefore,
preprocessing (22) was applied. Success of the preprocessing
methods was based on most distinct clusters being observed in
the score plot. Both MSC and SNV preprocessing gave excellent
results. Because of the similarity of the results obtained, it was not
deemed necessary to show both sets of results. The results of
either preprocessing method could have been shown; MSC was
chosen for no particular reason. After MSC, to remove the effect
of scattering differences, a five component PCAmodel (eq 1) was
made on the cleaned HSI. Principal component (PC) sizes
expressed as % SS were 91.3, 2.7, 1.9, 1.3, and 0.04, for the first
image. Further components were too noisy to be included. Of the
PCs calculated, the second and fourth PCs looked most promis-
ing. Figure 5 shows the score images for t2 and t4 after back-
ground and shading removal. Similar score values or score values
that would overlap in the score plot are shown with similar
grayscale intensities in the score image. If a color heatmap is used,
similar score values will be observed in similar colors in the score
image. Classification in score images can thus be observed on the
basis of similar grayscale or similar color intensities. Score image
t2 shows differences between the kernels of different hardness,

while score image t4 shows darker areas for the kernels with
predominantly vitreous endosperm. No differences in grayscale
intensities based on hardness categories were noticeable in the
other PC score images. It is, however, not optimal to determine
such differences on score images alone. The use of score plots is
more optimal (Figure 6). The score plot for t2 and t4 (for the first
samples set) shows a rough delineation of three clusters poten-
tially indicating the different hardness classes; these are indicated
with ellipses in Figure 6.

A more correct description of the clusters is given in Figure 7

where the classesweremadebypolygonmarking on the score plot
with interactive projection of the classes on the score image. By
interactive evaluation between the score plot and score image, we
identified two clusters as being vitreous and floury endosperm
present in hard and soft kernels, respectively. The third cluster
turned out to be endosperm predominantly present in the maize
kernels identified as being of intermediate hardness. Figure 7

shows the final selected classes in different colors in the score plot
and projected on the score image giving a classification image,
while unclassified pixels are shown in gray.

Figure 8 shows the score plot and classification image for the
image of the second set of samples, showing similar results after
PCAwas applied, independent from the first image, to this second
image. For the second image, PCs 2 and 4 were also selected, and
the % SS values were 3.8% and 1.6%, respectively, for the two
PCs. The agreement between the two sample sets indicates that
the selection of classes was reasonably robust.

In the classification images (Figures 7 and 8), large green areas
are observed in the kernels originally labeled as hard. These may
be assumed to represent vitreous endosperm. Similarly, large blue
areas in the kernels orginally labeled as soft may represent floury
endosperm. This is a histological observation based on a priori
knowledge from cereal science. This shows that hard and soft
maize kernels constitute different ratios of vitreous and floury
endosperm. Large red areas are seen mostly in the maize kernels

Figure 4. Image at 1102 nm with background (left) and cleaned image at
1102 nm (right). The physical size is 11.4 mm � 4.4 mm.

Figure 5. Score images t2 (left) and t4 (right) after removal of background
and other disturbances such as geometrical errors and shadows (32% of
the total imaged area was left after cleaning). Kernels with similar gray
scale intensities would be similar in kernel hardness or endosperm texture.

Figure 6. PCA score plot (t2 vs t4) of the first hyperspectral image (first
sample set). The ellipses indicate clusters that are of the potentially soft,
intermediate, and hard classes. A heat map is used to indicate the density
of similar score values with blue indicating lowest density and red highest
density.



Article J. Agric. Food Chem., Vol. 57, No. 19, 2009 8765

labeled as being of intermediate hardness. This indicates the
presence of a third type of endosperm different in physical
properties and chemical composition from vitreous and floury
endosperm. It is the first time a third endosperm type has been
observed and reported, which was possible because of the

combined spatial and spectral information offered by NIR
hyperspectral imaging.

An important aspect of NIR hyperspectral image analysis is
spectral interpretation. This interpretation is done by looking at
PCA loadings, but it should not be done until pure classes are

Figure 7. PCA score plot (left) of the first hyperspectral image (first sample set) with classification (green = vitreous; red = 3rd type endosperm; blue = floury)
and the corresponding classification projected onto a score image (right). Vitreous = 15.6%, 3rd type = 28.6%, and floury = 39.9%.

Figure 8. PCA score plot (left) of the second hyperspectral image (second sample set)with classification (green = vitreous; red = 3rd type endosperm; blue =
floury) and the corresponding classification projected onto a score image (right).
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found. The loadings would simply become too complicated when
more than three classes are present in the same model.

The interpretation of the loadings was, however, possible once
the most optimal vitreous and floury classes were made. A data
set was made of 7302 spectra of vitreous endosperm and 18742
spectra of floury endosperm. A preliminary PCA analysis, after
only mean-centering, showed that the first three components
were based on scattering effects and that interesting details
related to chemical composition only came in higher components.
After MSC correction and mean-centering, a PCA model was
developed giving 88.1% SS for the first and 4.3% SS for the
second component. The second PC score shows almost perfectly

separated vitreous and floury pixels (Figure 9). Because of this,
the corresponding loading line plot in Figure 10 gives a chemical
interpretation of why these two pixel classes are different. The
peaks at 1220, 1405, 1690, and 1870 nm indicate variation in
endosperm texture due to differences in starch composition (23).
These peaks are positive for the vitreous endosperm class, as is the
moisture peak at 1944 nmwhich is clearly visible.A negative peak
at 2195 nm indicates amino acids (23) related to the protein
content and relates to the floury endosperm class. The presence of
these peaks was expected as it is known that starch granules are
held together by the protein matrix differently for vitreous and
floury endosperm.

Figure 9. Score plot of principal component 2 for vitreous and floury endosperm classes of the first sample set after MSC correction. Score values for vitreous
endosperm are shown in approximately the first third of the plot with the remainder of the plot showing the score values of the floury endosperm.

Figure 10. Loading line plot of principal component 2 for vitreous and floury endosperm classes of samples set one after MSC correction.
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A PLS-DA regression model (eq 2) for the properties vitreous
and floury endospermwas developed by setting dummy values of
1 for vitreous and 0 for floury endosperm with 0.5 as the cutoff
value. Because of the clear clusters, this cutoff value would be
suitable. In order to get a simple model, all pixels except those
representing vitreous and floury endosperm were removed. This
is an extreme form of ROI selection. Because of the expected
correlation between wavelengths, it was necessary to use a partial
least-squares (PLS) regression model (24). There were enough
kernels to allow the selection of a training set, and a partition was
made with 4 hard, intermediate, and soft kernels each in the
training set, and 2 hard, intermediate, and soft kernels each in the
test set. This small number of kernels was adequate since it gave
17 813 pixels (68.4%) in the training set and 8230 (31.6%) in the
test set for the first image and 17210 (49.1%) and 17829 (50.9%)
for the training and test sets, respectively for the second image.

As a rule of thumb, a PLS-DAmodel should give a coefficient
of determination (R2y) (eq 3) of 66%ormorewith less than 5 PLS
components. The followingR2y values were obtained for the first
6 PLS components: 17.1%, 81.9%, 85.3%, 85.9%, 87.0%, and
87.3%after the PLS-DAmodel was developed for the first image.
However, in order to avoid overfitting and on the basis of the
classification observed in the score images of PC 4 between the
kernels of different hardness, a model with 4 PLS components
would suffice. This calibrationmodel should alsoworkwell in the
test set. This means that vitreous endosperm pixels in the test set
are predicted as 1 and that floury endosperm pixels are predicted
as 0. In reality, this becomes a distribution around 1 for vitreous
and a distribution around 0 for floury. The region around 0.5
should remain empty. TheR2y values obtained for the first 6 PLS
components of the second image were 90.5%.

Figure 11 shows the prediction image results Xtrainb (training
set) (eq 2) and yhat (test set) (eq 4) for the 4 PLS componentmodel
(first sample set). We found that more than 4 PLS components
gave no visual improvement and would therefore constitute an
overfit.

The y-variable is color coded in the prediction image, making 1
(the dummy variable for vitreous endosperm) cyan or gray and 0
(the dummy variable for floury endosperm) magenta or black.
For the left image (Figure 11a), the training set is in color and the
test set in grayscale, while for the image at the right (Figure 11b),
the test set is in color and the training set in grayscale. The
presence of these endosperm types in the prediction images is thus
indicated by large areas of cyan/gray or magenta/black.

From Figure 11, it is clear that floury endosperm (magenta or
black) covers the largest area of the endosperm of kernels
classified as soft, followed by the intermediate kernels with the
hard kernels constituting almost no floury endosperm.Within the
intermediate kernels, some floury endosperm tends to be localized
in the center of the kernel with small areas of vitreous endosperm
(cyan or gray) noticed on the sides of the kernels. This agrees with
standard cereal literature (1,2). The vitreous endosperm (cyan or
gray) areas in the hard kernels are localized at the bottom of the
kernel above the germ (on the basis of imaging position). On the
basis of the chemical information from the image, these areas are
similar to the areas of vitreous endosperm noticed on the sides of
the kernels. The prediction image, however, only explains the
composition of the kernels in terms of vitreous and floury
endosperm types.

In order to clarify the presence of the third endosperm type
observed in the score plots and score images, this class was added
to the test set and its yhat also calculated. Figure 12 shows the
results of this operation for the images of both the samples sets. In
Figure 11, onlymagenta/black and cyan/gray areaswere observed
referring to floury and vitreous endosperm, respectively. A third

color, i.e., purple now emerges (Figure 12) in both the training and
test sets, representing the third endosperm type, thus indicating
this class is neither vitreous nor floury. This confirms what was
illustrated earlier in the PCA analysis, i.e., the presence of a third
type of endosperm.

This example also shows additional information about pene-
tration depth. It was possible to see the endosperm through the
pericarp, and it shows that penetration depth is down to the
endosperm; the fact the embryo below was not seen shows that
the penetration depth is not that deep. The pericarp thickness is
0.1 mm, and the distance to the embryo is 1-2 mm. From this, it
can be assumed that the observed endosperm types as seen in
Figures 7, 8, and 12 are up to about 1-2 mm under the surface of
the kernel.

It is essential that NIR HSI are cleaned efficiently to ensure
analysis of a high quality. Thismakes the removal of background,
bad pixels, and any geometrical, physical, and/or optical distur-
bances imperative. The interactive choice of clusters/classes
between the score plots and score images is an extremely versatile
tool. Although it is subjective and not completely reproducible, it
has been found to be acceptable if performed by a trained
researcher. Because of the huge number of pixels in a score plot,
it is almost impossible to select the same classes repeatedly.
Chemometrics models change when clusters are chosen differ-
ently, but they are still robust if histological background informa-
tion is taken into account. It was possible to clearly delineate
vitreous and floury endosperm classes. These classes are present
in all kernels but in different ratios. A surprising third endosperm
class was observed. This type of endosperm has physical and
chemical properties different from those of the vitreous and
floury endosperm. It is possible that this third class of endosperm
consists of a mixture or layers of floury and vitreous endosperm.
The exact properties of this third class still need to be confirmed.

The interpretation of loading line plots allows for chemical
interpretation of the differences between vitreous and floury
endosperm. These seem to relate to the density of the starch
and the associated protein matrix.

The PLS-DAmodel with a highR2y (>85%) confirms that the
correct classes for vitreous and floury endosperm were chosen.
The PLS prediction (yhat) image could as easily be interpreted,

Figure 11. (a) Training set in color with test set in grayscale and (b) test
set in color with training set in grayscale of a four component PLS-DA
model for classification between vitreous and floury endosperm. These are
the 18maize kernels of only the first sample set. The pixels for the third type
of endosperm observed are not included in the test set. Identification of the
kernels is given in the table. Legend: magenta or black = floury; cyan or
gray = vitreous.
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from the known distribution of vitreous and floury endosperm
within a maize kernel, as the PCA classification. The presence of
the third endosperm class was also confirmed in the PLS-DA
prediction images.

Penetration depth in this studywas estimated to be 1-2mm, as
the germ belowwas not noticeable in the image, but will differ for
other food products. For future studies, a better understanding of
the three-dimensional structure of the maize kernels would be
advantageous. This should include studying kernels differing in
shape and thickness. Currently, NIR hyperspectral image analy-
sis, as applied in this study, is only suitable for laboratory studies.
It is, however, a powerful technique that could be used for cereal
grains in order to produce localized information. Because of its
high speed of analysis, it would be of great value when thousands
of samples need to be analyzed for endosperm texture in a maize
breeding program.

ABBREVIATIONS USED

HSI, hyperspectral images; MCT, mercury-cadmium-
telluride; MSC, multiplicative scatter correction; NIR, near-
infrared; PC, principal component; PCA, principal component
analysis; PLS, partial least-squares; PLS-DA, partial least-
squares discriminant analysis; PSI, particle size index; ROI,
regions of interest; RVA, rapid visco analyzer; SWIR, short wave
infrared; SNV, standard normal variate; TADD, tangential
abrasive dehulling device.
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